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Abstract
In this paper we extend and generalize the semi-nonparametric mod-
eling and sieve estimation approach of Bierens and Song (2011a) for
independently and identically distributed first-price auctions to first-
price auction models with observed auction-specific heterogeneity. The
latter will be incorporated via a linear model for the log values with
unknown error distribution. This distribution will be modeled semi-
nonparametrically similar to the approach in Bierens (2011). It will
be shown that the semi-nonparametric conditional value distribution
involved can be estimated consistently by minimizing the integrated
square distance between the empirical characteristic function of the
actual bids and the simulated bids, together with the auction-specific
covariates, via an integrated conditional moment criterion.

Keywords: Auction-specific heterogeneity, empirical characteristic func-
tion, first-price auctions, integrated conditional moment, semi-nonparametric
estimation, sieve estimation, simulated method of moments.
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1 Introduction

In many repeated auctions the objects to be auctioned off are different across
auctions. Consequently, the value distributions are then different across auc-
tions. However, if we observe the auction-specific characteristics in the form
of covariates, and the value distributions conditional on these covariates have
the same functional form, the conditional bid distribution given the auction-
specific covariates will be the same for all auctions. The question then arises
how to incorporate the observable characteristics into the auction model.
Laffont et al. (1995) incorporate covariates in the value distribution by spec-
ifying a linear regression model for the log of values with zero-mean normal
errors. Donald and Paarsch (1996) parameterize the upper bound of the
values as a function of covariates. Li (2005) specifies the value distribution
as the exponential distribution with mean a linear function of covariates.
Guerre et al. (2000) propose a two-stage nonparametric kernel density es-
timation approach, where in the first stage the bid distribution and density
conditional on the covariates are estimated nonparametrically, which then is
used in inverse form to generate values given the actual bids and the covari-
ates. The generated values are then used to estimate the conditional value
distribution nonparametrically.
In this paper, we propose an alternative semi-nonparametric approach

to estimate first-price auction models with observed auction-specific het-
erogeneity and private, symmetric and independent values conditional on
a vector of auction specific covariates. This approach extends the semi-
nonparametric integrated simulated moments estimation method of Bierens
and Song (2011a) to the heterogenous case with observable auction-specific
covariates. We consider a first-price auction model where the log value takes
the form of a linear regression model conditional on covariates, with unknown
error distribution. The latter distribution is modeled semi-nonparametrically
similar to the approach in Bierens (2011). Given the corresponding value
distribution, we generate for each auction artificial bids conditional on the
auction-specific covariates. Next, we take the difference of the empirical char-
acteristic functions of the actual bids and the simulated bids, both jointly
with the covariates, as the moment conditions. Integrating the squared dif-
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ference of these empirical characteristic functions yields an integrated con-
ditional moment (ICM) objective function, similar to the ICM test statistic
proposed by Bierens (1982) and Bierens and Ploberger (1997). Minimizing
this ICM objective function to the regression parameters and the correspond-
ing semi-nonparametric error distribution via a sieve estimation method then
yields a consistent estimator of the conditional value distribution.

2 Model and Data-Generating Process

2.1 The equilibrium bid function and its identification

Given a vector X of auction-specific characteristics, let Γ0(v|X) be the con-
ditional distribution of the private value V that each potential bidder has
for the object to be auctioned off in an auction characterized by X, and let
p0 (X) > 0 be the reservation price if it is binding, i.e., Γ0(p0 (X) |X) > 0.
If the reservation price is nonbinding then without loss of generality we may
set p0 (X) = 0. Moreover, let I0(X) ≥ 2 be the number of potential bidders
in this auction, which is ex-ante known to all potential bidders. The latter
also applies to the reservation price.
As is well-known, the equilibrium bid function of a first-price sealed bid

auctions where values are independent and private, bidders are symmetric
and risk-neutral, and the reservation price is binding, takes the form

β0 (v|X) = v − 1

Γ0(v|X)I0(X)−1
Z v

p0(X)

Γ0(z|X)I0(X)−1dz (1)

for v > p0 (X) . See for example Riley and Samuelson (1981) or Krishna
(2002).
We will assume that all the bids in the auction characterized by X are

observed by the econometrician. Then conditional on X = x, x ∈ X, with X
the support ofX, the conditional value distribution Γ0(v|x) for v ≥ p0(x) and
the number of potential bidders I0(x) are nonparametrically identified from
the conditional distribution of the bids and the actual number of bidders.
This follows from Theorem 4 of Guerre et al. (2000), and under more general
conditions from Bierens and Song (2011b). The identification conditions in
the latter paper are:
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Assumption 1.
(a) The conditional value distribution Γ0(v|x), given X = x ∈ X ⊂ Rd,
is the same in all auctions and is known to each potential bidder, and is
absolutely continuous with conditional density γ0(v|X) and finite conditional
expectation:

R∞
0
vγ0(v|X)dv <∞ a.s.

(b) Given the vector X of auction-specific characteristics the number of po-
tential bidders I0(X) and the reservation price p0(X) are ex-ante exactly
known to all potential bidders. In other words, the pair (I0(X), p0(X)) is
measurable with respect to the σ-algebra FX = σ(X) generated by X.1

(c) The values themselves are independent within auctions, conditional on X,
and the auction specific covariates X and corresponding reservation prices
p0(X) are independent and identically distributed across auctions, with joint
support X× P.
(d) The reservation price and all the bids in each auction are observed by the
econometrician.

Note that the finite conditional expectation conditions in part (a) of As-
sumption 1 guarantees that the conditional bid distribution has bounded
support, as follows from Guerre et al. (2000, Footnote 8) with reference to
Laffont et al. (1995). The other conditions guarantee that if there exists an-
other auction with the same auction-specific covariates X, reservation price
p0(X), absolutely continuous conditional value distribution Γ(v|X) and num-
ber of potential bidders I(X) such that its bid function is a.s. the same as (1),
then with probability 1, Γ(v|X) = Γ0(v|X) for v > p0(X) and I(X) = I0(X).
It has been shown in Bierens and Song (2011b) that, with I∗(X) the

actual number of bidders,

Γ0(p0(X)|X) =
E[I∗(X)2|X]
E[I∗(X)|X] −E[I∗(X)|X]

I0(X) =
(E[I∗(X)|X])2

E[I∗(X)|X] + (E[I∗(X)|X])2 − E[I∗(X)2|X] , (2)

which can be estimated consistently via nonparametric kernel regression esti-
mates of E[I∗(X)|X] and E[I∗(X)2|X]. Therefore, we may treat Γ0(p0(X)|X)
and I0(X) as known to the econometrician.

1See Bierens (2004, Definition 1.9, p.22), for example. Consequently, I0(x) and p0(x)
are nonrandom Borel measurable functions on Rd.
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Without loss of generality we may now assume that the potential bidders
with value V ≤ p0(X) issue an observable zero bid, so that the bid function
becomes

β0 (v|X) =

µ
v − 1

Γ0(v|X)I0(X)−1
Z v

p0(X)

Γ0(z|X)I0(X)−1dz
¶

×1 (v > p0(X)) (3)

where 1 (.) is the indicator function. Then given X the conditional distribu-
tion function of the bids in this auction, including zero bids, is

Λ0(b|X) = Pr [β0 (V |X) ≤ b|X] , (4)

where V is a random drawing from Γ0(v|X).

2.2 Semi-nonparametric specification of the conditional
value distribution

The problem with the nonparametric two-step approach of Guerre et al.
(2000) is that it is difficult to display the nonparametric estimation results
for γ0(v|x) if the dimension of x is larger than 1. Therefore, we propose
to specify the log values as a linear model in the covariates. In particular,
let Vi,` be the value of potential bidder i in auction ` ∈ {1, 2, ..., L} with
characteristics X` and assume that

Assumption 2. For i = 1, 2, ..., I0(X`) and ` = 1, 2, ...., L,

ln(Vi,`) = θ00X` + εi,`, (5)

where the error terms εi,` are i.i.d. within and across auctions, and are
independent of X`.

Then

Γ0(v|X) = F0(v. exp(−θ00X)) (6)

where F0(z) is the distribution function of Zi,` = exp(εi,`), and

γ0(v|X) = exp(−θ00X)f0(v. exp(−θ00X))
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with f0(z) the density of F0(z).
The finite conditional expectation conditions in part (a) of Assumption

1 now readsZ ∞

0

v.γ0(v|X)dv =

Z ∞

0

v exp(−θ00X)f0(v. exp(−θ00X))dv

= exp(θ00X)
Z ∞

0

zf0(z)dz <∞ a.s.,

hence we need to require that

Assumption 3. The error terms εi,` in model (5) satisfy E[exp(εi,`)] <∞,

and that Pr[exp(θ00X) <∞] = 1. A sufficient condition for the latter is that

Assumption 4. E[X 0X] <∞,

because then by Chebyshev’s inequality

lim sup
M→∞

Pr[exp(θ00X) > M ] = lim sup
M→∞

Pr[θ00X > ln(M)]

≤ lim sup
M→∞

Pr[||θ0||.||X|| > ln(M)] ≤ lim sup
M→∞

||θ0||2E[X 0X]
(ln(M))2

= 0.

It remains to show that F0 and θ0 are identified, given Γ0(v|X). Suppose
that there exist an absolutely continuous distribution function F with density
f and a parameter vector θ such that for all v > p0(X),

F0(v. exp(−θ00X)) = F (v. exp(−θ0X)) a.s.
Then with z = v. exp(−θ0X),

F0(z. exp((θ − θ0)
0X)) = F (z) a.s.

for all z > p0(X) exp(−θ0X). Next, let F−10 (u) be the inverse of F0, i.e.,

F−10 (u) = inf
F0(z)=u

z for 0 < u < 1.

Then exp((θ−θ0)0X) = F−10 (F (z))/z a.s. for all z > p0(X) exp(−θ0X), hence
exp((θ − θ0)

0X) = lim
z→∞

F−10 (F (z))/z a.s.
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Since c = limz→∞ F−10 (F (z))/z is nonrandom, we now have (θ − θ0)
0X =

ln(c) a.s., hence(θ − θ0)
0(X − E(X)) = 0 a.s. and therefore

(θ − θ0)
0E [(X −E(X))(X −E(X))0] (θ − θ0) = 0

Thus, if

Assumption 5. det[Var(X)] > 02

then θ = θ0 and F (z) = F0(z) for z > p0(X) exp(−θ00X).
Moreover, it is easy to verify that if in addition,

Assumption 6. Pr[p0(X) exp(−θ00X) ≤ κ] > 0 for all κ > 0,

then F (z) = F0(z) for all z > 0.
Summarizing, the following identification results hold.

Lemma 1. Consider a first price auction with auction-specific character-
istics X, reservation price p0(X), number of potential bidders I0(X) and
conditional value distribution Γ(v|X) = F (v. exp(−θ0X)), such that the con-
ditional bid distribution involved is the same as (4). Then under Assumptions
1-6, θ = θ0 and F ≡ F0.

2.3 Data-generating process

Substituting (6) in (3) the equilibrium bid function now becomes

β0 (v|X)
=

µ
v − 1

F0(v. exp(−θ00X))I0(X)−1
Z v

p0(X)

F0(z. exp(−θ00X))I0(X)−1dz
¶

×1 (v > p0 (X))

=

Ã
v − exp(θ00X)

F0(v. exp(−θ00X))I0(X)−1
Z v exp(−θ00X))

p0(X) exp(−θ00X)
F0(y)

I0(X)−1dy

!
×1 (v > p0 (X))

2Note that this condition excludes a constant in X.
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and the conditional distribution of a corresponding bids B (including zero
bids) given X is

B|X ∼ β0 (V |X)
with V a random drawing from F0(v. exp(−θ00X)).
As is well known, V can be generated by solving U = F0(V. exp(−θ00X)),

where U is a random drawing from the uniform [0, 1] distribution, hence

V = exp(θ00X)F
−1
0 (U)

where F−10 (u) is the inverse of F0:

F−10 (u) = inf
F0(z)=u

z for 0 < u < 1.

Moreover, it is also well-known that Z = F−10 (U) is distributed as F0(z).
Thus, with B`,j for j = 1, ..., I` the bids in auction ` with characteristics

X`, and given the number of bidders (including zero bidders) I` = I0(X`) and
reservation price p` = p0(X`) for ` = 1, ..., L, the conditional distribution of
B`,j given X` is

B`,j|X` ∼ exp(θ00X`)

Ã
Z`,j − 1

F0(Z`,j)I`−1

Z Z`,j

p` exp(−θ00X`)
F0(y)

I`−1dy

!
×1 (Z`,j > p` exp(−θ00X`))

= exp(θ00X`)η (Z`,j|F0, I`, p` exp(−θ00X`)) ,
where the Z`,j’s are independent random drawings from F0(z) and

η(z|F, I, p) =

µ
z − 1

F (z)I−1

Z z

p

F (y)I−1dy
¶
1 (z > p) (7)

=

µ
p
F (p)I−1

F (z)I−1
+
(I − 1)
F (z)I−1

Z z

p

yF (y)I−2f(y)dy
¶
1 (z > p)

with f the density of F . The second equality follows from integration by
parts. The latter implies, together with Assumption 3, that

exp(θ00X`)η (Z`,j|F0, I`, p` exp(−θ00X`)) ≤ p` + (I0(X`)− 1)
Z ∞

0

zf0(z)dz

so that

Pr

∙
B`,j ≤ p` + (I` − 1)

Z ∞

0

zf0(z)dz

¸
= 1
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2.4 Identification via characteristic functions

As is well-known, the distribution of a bounded random variable is com-
pletely determined by the shape of its characteristic function in an arbitrary
neighborhood of zero. Thus, consider the same alternative first price auction
as in Lemma 1, and denote a typical bid in this auction by B(θ, F |X), i.e.,

B(θ, F |X) = exp(θ0X)η (Z(F )|F, I0(X), p0(X) exp(−θ0X)) , (8)

where Z(F ) is a random drawings from F (z). Denote the conditional char-
acteristic function of B(θ, F |X) given X by

ϕ(t|θ, F,X) = E [exp (i.t.B(θ, F |X)) |X] (9)

=

Z ∞

0

exp (i.t. exp(θ0X)η (z|F, I0(X), p0(X) exp(−θ0X))) f(z)dz
= ψ(t. exp(θ0X)|F, I0(X), p0(X) exp(−θ0X)),

where i =
√−1 and

ψ(ξ|F, I, p) =
Z ∞

0

exp(i.ξ.η(z|F, I, p)f(z)dz

= F (p) +

Z ∞

p

exp

µ
i.ξ.

µ
z − 1

F (z)I−1

Z z

p

F (y)I−1dy
¶¶

f(z)dz (10)

Lemma 2. Suppose that for an arbitrary constant c > 0,

sup
|t|<c

|ϕ(t|θ, F,X)− ϕ(t|θ0, F0, X)| = 0 a.s. (11)

Then under Assumptions 1-6, θ = θ0 and F ≡ F0.

Proof. Let B be a bounded random variable with characteristic func-
tion ϕ(t) = E[exp(i.t.B)], and note that by the boundedness of B, ϕ(t) =P∞

m=0(i
mtm/m!)E[Bm], hence dkϕ(t)/(dt)k

¯̄
t=0

= ikE[Bk]. Next, let B∗ be
a random variable with characteristic function ψ(t) = E[exp(i.t.B∗)] such
that for all t ∈ (−c, c), ϕ(t) = ψ(t). Then dkψ(t)/(dt)k

¯̄
t=0

= ikE[Bk],

which implies that for k = 1, 2, 3, ...., E[Bk∗ ] = E[B
k]. Consequently, ψ(t) =P∞

m=0(i
mtm/m!)E[Bm] = ϕ(t) for all t, which implies that B ∼ B∗.
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This argument trivially carries over to conditional distributions and con-
ditional characteristic functions, hence (11) implies

sup
t
|ϕ(t|θ, F,X)− ϕ(t|θ0, F0,X)| = 0 a.s.,

which in its turn implies that conditional on X, B(θ, F |X) ∼ B(θ0, F0|X).
The latter has conditional distribution function (4), which by Lemma 1 proves
Lemma 2.

Lemma 3. Let Φ : Rd → Rd be a bounded one-to-one mappings with Borel
measurable inverse,3 and denote

ϕ(ξ|θ, F ) = E [ϕ(ξ1|θ, F,X) exp (i.ξ02Φ(X))] , (12)

ξ = (ξ1, ξ
0
2)
0 ∈ Rd+1.

Let ξ1, ξ2, ...., ξd+2 be arbitrary positive constants and denote

Ξ = ×d+1m=1[−ξm, ξm]. (13)

If Z
Ξ

|ϕ(ξ|θ, F )− ϕ(ξ|θ0, F0)|2 dξ = 0 (14)

then under Assumptions 1-6, θ = θ0 and F ≡ F0.

Proof. Note that ϕ(ξ|θ, F ) is the joint characteristic function of B(θ, F |X) and
Φ(X). Moreover, note that by the continuity of characteristic functions, (14)
is equivalent to

sup
ξ∈Ξ

|ϕ(ξ|θ, F )− ϕ(ξ|θ0, F0)| = 0.

Then it follows similar to the proof Lemma 1 that

(B(θ, F |X),Φ(X)) ∼ (B(θ0, F0|X),Φ(X))
hence, conditional on Φ(X),

B(θ, F |X) ∼ B(θ0, F0|X). (15)

But Φ(X) generates the same σ-algebra as X, and therefore (15) holds con-
ditional on X as well. The lemma under review now follows from Lemma 1.

3If X is already bounded then we may choose Φ(x) = x.
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3 Integrated Simulated Moments Sieve Esti-
mation

3.1 The objective function

The empirical counterparts of the characteristic functions ϕ(ξ|θ0, F0) and
ϕ(ξ|θ, F ) in (14) are

bϕL(ξ) = 1

L

LX
`=1

Ã
1

I`

IX̀
j=1

exp (i.ξ1.B`,j)

!
exp (i.ξ02Φ(X`)) (16)

where the B`,j’s are the observed bids, and

eϕL(ξ|θ, F ) = 1

L

LX
`=1

Ã
1

I`

IX̀
j=1

exp
³
i.ξ1. eB`,j(θ, F )´! exp (i.ξ02Φ(X`)) (17)

respectively, whereeB`,j(θ, F ) = exp(θ0X`)η ³eZ`,j(F )|F, I`, p` exp(−θ0X`)´ (18)

with the eZ`,j(F )’s independent random drawings from F (z).
It is not hard to verify that limL→∞E[|bϕL(ξ)−ϕ(ξ|θ0, F0)|2] = 0 pointwise

in ξ and similarly, limL→∞E[|eϕL(ξ|θ, F ) − ϕ(ξ|θ, F )|2] = 0 pointwise in ξ,
θ and F. Therefore, it follows from Chebyshev’s inequality and the dominated
convergence theorem that

bQL(θ, F ) = Z
Ξ

|eϕL(ξ|θ, F )− bϕL(ξ)|2dξ (19)

converges in probability to

Q(θ, F ) =

Z
Ξ

|ϕ(ξ|θ, F )− ϕ(ξ|θ0, F0)|2 dξ (20)

as L→∞, pointwise in θ and F. However, it can also be shown thatbQL(θ, F ) a.s.→ Q(θ, F )

as L→∞, uniformly in θ and F confined to compact spaces.
In view of Lemma 3 this result suggests to estimate θ0 and F0 by mini-

mizing bQL(θ, F ) to θ and F. Of course, in practice this minimization problem
is not feasible. The way to solve this problem is sieve estimation.
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3.2 Sieve estimation

As usual for any nonlinear estimation method, we need to specify compact
parameter spaces Θ and F for θ0 and F0, respectively. Moreover, sieve esti-
mation requires the construction of sieve spaces of F . Thus,

Assumption 7. θ0 ∈ Θ, where Θ is a compact subset of Rd,

and

Assumption 8.
(a) F0 ∈ F , where F is a compact metric space of absolutely continuous dis-
tribution functions on (0,∞) endowed with the ”sup” metric ||F1−F2||sup =
supz>0 |F1(z)− F2(z)|;
(b) there exists an increasing sequence {Fn}∞n=1 of compact subspaces of F
such that for each n the computation of the sieve estimator

(bθn,L, bFn,L) = arg min
θ∈Θ,F∈Fn

bQL(θ, F ) (21)

is feasible, and {Fn}∞n=1 is dense in F , i.e.,

F = ∪∞n=1Fn. (22)

How to construct F and the sequence {Fn}∞n=1 of sieve spaces will be shown
in Section 4. Note that the bar in (22) denotes the closure. Also note that the
condition (22) is equivalent to the condition that for each F ∈ F there exists
a sequence of distribution functions Fn ∈ Fn such that limn→∞ ||F−Fn||sup =
0.
Now suppose that

sup
θ∈Θ,F∈F

¯̄̄ bQL(θ, F )−Q(θ, F )¯̄̄ a.s.→ 0 as L→∞; (23)

(θ0, F0) = arg min
θ∈Θ,F∈F

Q(θ, F ) is unique; (24)

Q(θ, F ) is continuous in (θ0, F0). (25)

Then the following standard consistency result for sieve estimators holds.
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Theorem 1. Let nL be an arbitrary subsequence of L such that limL→∞ nL =
∞. Under Assumptions 7 and 8 and the conditions (23), (24) and (25),bθnL,L a.s.→ θ0 and supz>0 | bFnL,L(z)− F0(z)| a.s.→ 0 as L→∞.

Proof. Let Fn ∈ Fn be such that limn→∞ ||Fn − F0||sup = 0. Then

0 ≤ Q(bθnL,L, bFnL,L)−Q(θ0, F0)
= Q(bθnL,L, bFn,L)− bQL(bθnL,L, bFn,L) + bQL(bθnL,L, bFn,L)−Q(θ0, F0)
≤ sup

θ∈Θ,F∈FnL

¯̄̄ bQL(θ, F )−Q(θ, F )¯̄̄+ bQL(θ0, FnL)−Q(θ0, F0)
≤ 2 sup

θ∈Θ,F∈F

¯̄̄ bQL(θ, F )−Q(θ, F )¯̄̄+Q(θ0, FnL)−Q(θ0, F0) a.s.→ 0

where the latter follows from the conditions (23) and (25). Hence,

Q(bθnL,L, bFnL,L) a.s.→ Q(θ0, F0). (26)

It is now a standard exercise to verify from the conditions (24) and (25) that
(26) implies

||bθnL,L − θ0||+ || bFnL,L − F0||sup a.s.→ 0,

which proves the lemma.
Note that condition (24) follows from Lemma 3. In the next subsection

it will be shown that conditions (23) and (25) hold under Assumptions 1-7.

3.3 Continuity and uniform convergence

Let ϕ0(ξ) = ϕ(ξ|θ0, F0) and observe from (16) that ϕ0(ξ) = E[bϕL(ξ)] andbϕL(ξ)− ϕ0(ξ) =
1
L

PL
`=1(A`(ξ)−E[A`(ξ)]), where

A`(ξ) =

Ã
1

I`

IX̀
j=1

exp (i.ξ1B`,j)

!
exp (i.ξ02Φ(X`))

Since by Assumption 1(b), I` = I0(X`) and p` = p0(X`) where I0(x) and
p0(x) are non-random Borel measurable functions, and the X`’s are i.i.d., it
follows that Re[A`(ξ)] and Im[A`(ξ)] are i.i.d. random functions, which are
obviously a.s. continuous and uniformly bounded in ξ. It follows therefore
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from Jennrich’s (1969) uniform strong law of large numbers that, with Ξ
defined by (13),

sup
ξ∈Ξ

|bϕL(ξ)− ϕ0(ξ)|2 ≤ sup
ξ∈Ξ

Ã
1

L

LX
`=1

(Re[A`(ξ)]−E (Re[A`(ξ)]))
!2

+sup
ξ∈Ξ

Ã
1

L

LX
`=1

(Im[A`(ξ)]− E (Im[A`(ξ)]))
!2

a.s.→ 0

as L→∞.
To prove that

sup
(ξ,θ,F )∈Ξ×Θ×F

|eϕL(ξ|θ, F )− ϕ(ξ|θ, F )| a.s.→ 0 (27)

it suffices to show that

1

I`

IX̀
j=1

exp
³
i.ξ1. eB`,j(θ, F )´

is a.s. continuous in ξ1, θ and F, which is true if the simulated bids eB`,j(θ, F )
are a.s. continuous in θ and F. Then (27) follows from Jennrich’s (1969)
uniform strong law of large numbers.
To show the a.s. continuity of eB`,j(θ, F ), recall from (7) and (18) that

eB`,j(θ, F ) = exp(θ0X`)
µ
Z`,j − 1

F (Z`,j)I`−1

Z Z`,j

p` exp(−θ0X`)
F (y)I`−1dy

¶
×1 (Z`,j > p` exp(−θ0X`))

where the Z`,j’s are independent random drawings from F (z), which can be
generated by solving F (Z`,j) = U`,j where the U`,j’s are independent random
drawings from then uniform [0, 1] distribution. Then

eB`,j(θ, F ) = exp(θ0X`)

Ã
F−1(U`,j)− 1

U I`−1`,j

Z F−1(U`,j)

p` exp(−θ0X`)
F (y)I`−1dy

!
×1 (U`,j > F (p` exp(−θ0X`)))
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Given θ, it follows similar to Lemma 3 in Bierens and Song (2011a) thateB`,j(θ, F ) is a.s. continuous in F , whereas it is almost trivial that given
F , eB`,j(θ, F ) is a.s. continuous in θ. It follows now straightforwardly that
conditions (23) and (25) hold, i.e.,

Lemma 4. Under Assumptions 1-8, supθ∈Θ,F∈F
¯̄̄ bQL(θ, F )−Q(θ, F )¯̄̄ a.s.→

0 as L→∞. Moreover, Q(θ, F ) is continuous on Θ×F .

Thus, under Assumptions 1-8 the conditions of Theorem 1 hold.

4 The Compact Metric Space F and Its Sieve
Spaces

4.1 Distribution functions on the unit interval

Any distribution function F (z) on (0,∞) can be written as
F (z) = H(G(z))

where G(z) is an a priori chosen absolutely continuous distribution function
with support (0,∞) and

H(u) = F (G−1(u))

is a distribution function on the unit interval [0, 1]. Moreover, if F (z) is
absolutely continuous with density f(z) then H(u) is absolutely continuous
with density

h(u) = f(G−1(u))/g(G−1(u)),

where g(z) is the density of G(z).
For example, let G(z) = 1− exp(−z). Then G−1(u) = ln(1/(1− u)) and

thus H(u) = F (ln(1/(1− u))), h(u) = f(ln(1/(1− u)))/(1− u).
It has been shown by Bierens (2008) that any density function h(u) on

[0, 1] can be written as

h(u) =
(1 +

P∞
k=1 δkρk(u))

2

1 +
P∞

k=1 δ
2
k

a.e. on [0, 1] (28)
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where
P∞

k=1 δ
2
k <∞ and the ρk(u)’s are orthonormal Legendre polynomials of

order k. These polynomials can be constructed recursively by the three-term
recursive relation

ρk(u) =

√
2k − 1√2k + 1

n
(2u− 1)ρk−1(u)− (k − 1)

√
2k + 1

k
√
2k − 3 ρk−2(u)

for k ≥ 2, starting from ρ0(u) = 1, ρ1(u) =
√
3(2u− 1).

The representation (28) is based on the fact that the Legendre polyno-
mials form a complete orthonormal sequence in the Hilbert space L2(0, 1).
However, the main problemwith this representation is that these polynomials
have to be computed recursively so that h(u) has no closed form expression,
and neither has the corresponding distribution function H(u) =

R u
0
h(v)dv.

The same applies to the density and distribution function representations on
the basis of Hermite polynomials advocated by Gallant and Nychka (1987).
The sequence of Legendre polynomials is not the only complete ortho-

normal sequence in L2(0, 1). As is well-known, the Fourier series ρ0(u) ≡ 1,
ρk(u) =

√
2 sin(2kπu) if k ∈ N is odd, ρk(u) =

√
2 cos (2kπu) if k ∈ N is

even, is complete in L2(0, 1), and the same applies to the related cosine se-
ries ρ0(u) ≡ 1, ρk(u) =

√
2 cos (kπu) for k ∈ N. The advantage of using the

cosine series instead of the Legendre polynomials is that then the series rep-
resentations of h(u) and H(u) have closed forms. In particular, it has been
shown in Bierens (2011) that

Lemma 5. For an arbitrary density function h(u) on [0, 1] with corre-
sponding distribution function H(u) there exist possibly uncountable many
sequences δ = {δm}∞m=1 satisfying

P∞
m=1 δ

2
m < ∞ such that almost every-

where (a.e.) on (0, 1),

h(u) = h(u|δ) =
¡
1 +

P∞
k=1 δk

√
2 cos (kπu)

¢2
1 +

P∞
m=1 δ

2
m

, (29)

H(u) = H(u|δ)

= u+
1

1 +
P∞

i=1 δ
2
i

"
2
√
2
∞X
k=1

δk
sin (kπu)

kπ
+

∞X
k=1

δ2k
sin (2kπu)

2kπ
(30)

+2
∞X
k=2

k−1X
m=1

δkδm
sin ((k +m)πu)

(k +m)π
+ 2

∞X
k=2

k−1X
m=1

δkδm
sin ((k −m)πu)
(k −m)π

#
.
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The result for H(u) follows straightforwardly from (29) and the well-known
sine-cosine formulas. The reason for the non-uniqueness of the δk’s is the
square in (29), as pointed out in Bierens (2008).
Moreover, it has been shown in Bierens (2008, 2011) that the following

results hold.

Lemma 6. Given an a priori chosen positive sequence {δk}∞k=1 satisfyingP∞
k=1 δ

2

k <∞, let
∆ = X∞m=1[−δm, δm], ∆n =

¡
Xnm=1[−δm, δm]

¢× ¡X∞m=n+1{0}¢ ,
D = {h(u|δ) : δ ∈ ∆}, Dn = {h(u|δ) : δ ∈ ∆n},
H =

½
H(u) =

Z u

0

h(x)dx : h ∈ D
¾
, Hn =

½
H(u) =

Z u

0

h(x)dx : h ∈ Dn
¾

Endow the space ∆ with the metric

||δ1 − δ2|| =
vuut ∞X

m=1

(δ1,m − δ2,m)2,

where δi = {δi,m}∞m=1 for i = 1, 2, the space D with the L1 metric

||h1 − h2||L1 =
Z 1

0

|h1(u)− h2(u)|du

and the space H with the sup metric

||H1 −H2||sup = sup
0≤u≤1

|H1(u)−H2(u)|.

Then ∆, D and H are compact. Moreover ∆ = ∪∞n=1∆n, D = ∪∞n=1Dn and
H = ∪∞n=1Hn.

4.2 The space F and its sieve spaces Fn
Consequently, if

Assumption 9. The metric space F and its sieve spaces Fn are chosen as
F = {F (.) = H(G(.)) : H ∈ H} , Fn = {F (.) = H(G(.)) : H ∈ Hn} ,
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respectively, where G is an a priori chosen absolutely continuous distribution
function with support (0,∞),

then part (b) of Assumption 8 holds. Moreover, if in addition

Assumption 10. The space ∆ = X∞m=1[−δm, δm] is chosen such that H0(u) =
F0(G

−1(u)) ∈ H,

then part (a) of Assumption 8 holds. Furthermore, recall that under As-
sumptions 1-8 the conditions (23), (24) and (25) in Theorem 1 hold. Thus,
Theorem 1 now reads as follows.

Theorem 2. Let nL be an arbitrary subsequence of L such that limL→∞ nL =
∞. Under Assumptions 1-7 and 9-10, bθnL,L a.s.→ θ0 and supz>0 | bFnL,L(z) −
F0(z)| a.s.→ 0 as L→∞.

5 Concluding Remarks

So far we have only focused on the strong consistency of the sieve estimatorsbθnL,L and bFnL,L of the Euclidean parameter vector θ0 and the distribution
function F0 in the semi-nonparametric model Γ0(v|X) = F0(v. exp(−θ00X))
for the conditional value distribution. Along the lines in Bierens (2011) it is

possible to set forth further conditions such that
√
L(bθnL,L− θ0)

d→ Nd(0,Σ)
as L → ∞. This will be done in due course. Moreover, the conditional
moment test for the validity of the first-price auction model in Bierens and
Song (2011a) can be generalized to an Integrated Conditional Moment (ICM)
test of the first-price auction model under review, similar to the ICM test of
Bierens (1982) and Bierens and Ploberger (1997). Also this will be done in
due course.
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